搜索资源列表
sift4
- :提出一种基于尺度不变特征变换(SIFT)特征匹配的目标跟踪方法.首先使用SIFT提取目标特征,构 建目标特征库,然后使用基于K维树的特征匹配算法,对实时序列图像提取的SIFT特征与特征库中目标进行精确匹配 -: Based on Scale Invariant Feature Transform (SIFT) feature matching target tracking. The first to use SIFT target feature extraction, featur
ktree-1
- Min k tree in tabu search
K-nearest-neighbor-algorithm
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,讲解详细,非常有用-From K neighbor algorithm and distance measurement when it comes to KD tree, SIFT+ BBF algorithm, explain in detail, very useful
classificiation-algorithm-overview
- 机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
Image-Stitching
- 基于SIFT特征的全景图像拼接 主要分为以下几个步骤: (1) 读入两张图片并分别提取SIFT特征 (2) 利用k-d tree和BBF算法进行特征匹配查找 (3) 利用RANSAC算法筛选匹配点并计算变换矩阵 (3) 图像融合 -Image Stitching
ICP-point-cloud-registration
- 三维激光点云配准是点云三维建模的关键问题之一。经典的 ICP 算法对点云初始位置要求较高且配准 效率较低,提出了一种改进的 ICP 点云配准算法。该算法首先利用主成分分析法实现点云的初始配准,获得较好 的点云初始位置,然后在经典 ICP 算法的基础上,采用 k - d tree 结构实现加速搜索,并利用方向向量夹角阈值去除 错误点对,提高算法的效率。实验表明,本算法流程在保证配准精度的前提下,显著提高了配准效率。 -Three-dimensional laser point cl
Top-k-Local-Alignment
- 本文研究了基于外存后缀树的top- 局部比对算法,它从根本上消除了内存空间对算法的束缚-In this paper, we study the top-local matching algorithm based on the external suffix tree, which fundamentally eliminates the memory space constraints on the algorithm
2012.李航.统计学习方法
- 《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文
邻域计算
- kd树数据存储结构,进行klinyu搜索,GUI界面,具有保存搜索的k邻域数据(Kd tree data storage structure, k linyu search, GUI interface, with k neighborhood data to save the search)