搜索资源列表
liuxinggaishu
- :流形学习是一种新的非监督学习方法,近年来引起越来越多机器学习和认知科学工作者的重视. 为了加深 对流形学习的认识和理解,该文由流形学习的拓扑学概念入手,追溯它的发展过程. 在明确流形学习的不同表示方 法后,针对几种主要的流形算法,分析它们各自的优势和不足,然后分别引用Isomap 和LL E 的应用示例. 结果表明, 流形学习较之于传统的线性降维方法,能够有效地发现非线性高维数据的本质维数,利于进行维数约简和数据分 析. 最后对流形学习未来的研究方向做出展望,以期进一步拓展流形
Unsupervisededgedetection
- 单值图像在无监督情况下的边缘检测,是最新研究的热点-Single-valued image edge detection, unsupervised latest research hotspot
Unsupervised-segmentations
- Unsupervised segmentation of color-texture regions in images and video无监督的彩色图像分割方法,非常牛叉-Unsupervised segmentation of color-texture regions in images and video unsupervised color image segmentation method, is very cattle fork
image-study
- 多示例学习是与监督学习、非监督学习和强化学习并列的第四类学习框架,目前已广泛应用于药物设计、图像搜索等领域,并已获得很好的效果。在多示例学习中,训练样本是由多个示例组成的包,包是有概念标记的,但示例本身却没有概念标记,学习的目的是预测新包的类别。-Multi-instance learning and supervised learning, unsupervised learning and reinforcement learning tied for the fourth-class le
Wyner-Ziv-Video-Coding
- The manuscr ipt describes the design of a new codec WZVC, where SI generation performed on unsupervised learning of two motion fields.
unsupervised-classification
- Clustering and Unsupervised Classification
Vassilaros_ISODATA
- a little detail on the method of ISODATA unsupervised classification
output.pdf.tar
- supervised versus unsupervised method
Hyperspectral-Image-Classification-Through-Bilaye
- Hyperspectral image classification with limited number of labeled pixels is a challenging task. In this paper, we propose a bilayer graph-based learning framework to address this problem. For graph-based classification, how to establish the n
Comparison_of
- 非监督论文 可以供大家写论文的时候作为参考 重数研究使用-Unsupervised paper Can serve as reference for everybody to write a paper using multiplicity research
phd2.ZIP
- it is about unsupervised learning using fuzzy logic