搜索资源列表
基于LPC美尔倒谱特征的带噪语音端点检测
- 基于LPC美尔倒谱特征的带噪语音端点检测.rar格式为vip-America Fall Cepstral Noisy voice endpoint detection. Rar format vip
基于倒谱特征的带噪语音端点检测
- 基于倒谱特征的带噪语音端点检测.rar格式为vip-based Cepstral Noisy voice endpoint detection. Rar format vip
端点检测程序 多频带,熵 谱熵 teger能量
- 端点检测程序 多频带,teger能量,matlab自己编写
jin0530.rar
- 做毕业设计编写的基于谱熵端点检测的程序,欢迎分享,Designed to prepare graduates to do spectral entropy-based endpoint detection process, please share
detection
- 基于倒谱,分形,和谱熵的语音端点检测程序,三个文件夹内对应三种程序-Cepstrum-based, fractal, and spectral entropy of speech endpoint detection procedures, the three folders corresponding to the three procedures
spectrelentropy
- 使用子带谱熵进行的端点检测,将谱熵分为几个子带,检测效果不错-The use of sub-band entropy of the endpoint detection, the spectral entropy is divided into several sub-band to detect the effect of good
voice
- 基于谱减法的语音端点检测,运用了语音增强,去噪,谱减,加窗,端点检测等方法-Spectral subtraction based speech endpoint detection, using a speech enhancement, denoising, minus spectrum, add windows, endpoint detection methods such as
speech
- 本文首先总结了现有典型的语音端点检测算法,分析了其中几种 端点检测算法所选用的特征,给出了仿真结果和一些改进。随后提出 了噪声环境下两种语音端点检测新算法。算法一:从基于人耳的听觉 系统出发,对Mel标度滤波器组进行研究,提出了语音信号的一种新 的自适应时频参数,该参数既考虑了声道响应,又符合人耳听觉特性, 仿真结果表明了它的优越性。算法二:结合抗噪性能好的Mel倒谱距 离和多带能量嫡特征提出了一种改进的孤立词端点检测算法,该算法 不需要估计背景噪声来调整门限闽值,仿
97288435Speech_signal_short_time_analysis
- 关于双门限法的语音端点检测,及其量化和LPCC算法及倒谱参数的计算-limit on the two-door method of voice endpoint detection, and quantification and LPCC algorithm and Cepstrum calculations.
Pitch_Tracker-1.0.tar.Zip
- 包括倒谱基音周期混合特征系数的话者识别,能频积端点检测、语音基音周期检测等C++源代码,本人整理编译过,比较紧凑高效-Including Pitch cepstrum coefficient of the mixed features of speaker recognition, to plot frequency endpoint detection, voice, etc. Pitch Detection C++ source code, I compiled collate, compa
daopu
- 语音端点检测程序,利用倒谱方法对语音信号进行端点检测,效果不错-Voice activity detection procedure, and use of the speech signal cepstrum method for endpoint detection, good results
taep_end_detection
- 本程序主要是利用利用语音信号的基本特性进行谱熵端点检测-taep end detection
voice_prcossing
- 语音增强,倒谱,端点检测,共振峰检测,去噪-Speech enhancement, cepstrum, endpoint detection, formant detection, denoising
Speechrecognitiontechnology
- 比较详尽的介绍了语音识别系统的实现过程,以及相关技术。 端点检测:基于短时能量和短时平均过零率的端点检测和基于倒谱特征的端点检测 特征参数提取:LPCC和MFCC 参数模板存储:HMM和N_Gram 识别阶段:DWT 各阶段的相关技术都给了详细的介绍,绝对是好东西!-More detailed introduction to the speech recognition system implementation process and related technologie
speech
- 这是一段语音识别的c++源程序,包括预处理,端点检测,线性倒谱系数,dtw算法模式匹配。-This is a speech recognition c++ source, including preprocessing, detection, linear cepstrum, dtw algorithm for pattern matching.
Endpoindetectionspectralenhancement
- 基于端点检测的谱减法语音增强,语音的去噪算法仿真程序,可以进一步改进-Endpoint detection of the spectral subtraction based speech enhancement
11
- 为提高语音端点检测系统在低信噪(0 dB 以下) 下 检测的准确率, 提出了一种基于谱熵的端点检测算法。将每 帧信号分为16 个子带, 选取频谱分布在250~ 3. 5 kHz 并且 能量不超过该帧总能量90 的子带, 计算经过语音增强后的 子带能量以及各子带信噪比, 根据各子带信噪比的不同调整 其在整个谱熵计算过程中的权重, 然后平滑谱熵, 以最终的 谱熵作为端点检测的依据-To improve endpoint detection system in the low
matlab
- 用于基本的语音分析,包含端点检测,谱减法。(Used for basic speech analysis)
daopu
- 读入bluesky.wav数据,用倒谱距离法进行端点检测(Read into bluesky.wav data, and use cepstrum distance method for endpoint detection)
mfcc
- 语音端点检测,利用梅尔频率和谱熵进行的语音端点检测(voice activity detection)