搜索资源列表
二维小波变换
- 关于二维小波变换的程序 [精华] 说明:此算法重在概念,速度并不是很快。因为FOR循环的缘故。此程序从循环矩阵的观点出发,把圆周卷积和快速幅里叶变换建立了联系。实现了分解和无失真重构。它只做了一层分解,即将256x256图形分解成为64x64的四个图形,避免了使用WKEEP()的困惑。主要思想为用小波滤波器族构造正交阵W,变换写为B=W*A*W ,反变换为:A=W *A*W,这与所有正交变换无异。W为循环正交矩阵,因此可用FFT实现快速运算,难点就在重构矩阵上。若用矩阵概念明确,一个
Jakes_filter
- % File: Jakes_filter.m % Software given here is to accompany the textbook: W.H. Tranter, % K.S. Shanmugan, T.S. Rappaport, and K.S. Kosbar, Principles of % Communication Systems Simulation with Wireless Applications, % Prentice Hall PTR, 2
build_your_wavelets_at_home
- build our wavelet at home ,很不错的英文原版,教你怎么样作出自己的小波函数。-build our wavelet at home, very good in English, teach you how to make its own wavelet function.
JPEG2000_006.pdf
- 本文提出了一种基于提升算法的高效JPEG2000二维离散小波变换(2D—DWT)~ 结构,将边界延拓内嵌于离散小波变换过程中,减少了所需的内存空间和功耗。采用W 扫描输入方式和行列并行处理结构,加快了变换速度,大大提高了小波变换的效率。整个二维离散小波变换结构已经通过FPGA硬件仿真验证。-This paper presents a highly efficient algorithm based on lifting JPEG2000 two-dimensional discrete wave
cwt-ccode
- 连续小波变换程序,输入二进制文件,然后然后进行小波变换 C语言程序-/*this program compute the contious wavelet transform of the signal in a data file using the Professor A.Grossman s approach. the analyzing basic wavelet is modulated gaussian: exp(iwt)exp(-t**2/2)where w si th
WaveletTransformsinMATLAB
- 执行一维和二维小波变换在MATLAB环境中。十几包括的小波函数有: * Haar * Daubechies 1-6 * Symlets 1-6 * Coiflets 1 and 2 * Splines and reverse splines * CDF 9/7 and Le Gall 5/3 * S+P wavelets (2,2), (4,2), (4,4), (6,2), and (2+2,2) * Two Ten "TT" * Low-complexit
Fouriertransform
- 用振幅为0.8的方波进行傅立叶分析,并用分析得到的系数求解当K取不同值时的合成信号- F = FOURIER(f) is the Fourier transform of the sym scalar f with default independent variable x. The default return is a function of w. This example is useful for the persons who learn sth about signal pr
gonglvpu
- 设信号为x(n)=sin(2πf1n)+2cos(2πf2n)+w(n),n=1,2,....,N,其中f1=0.05,f2=0.12,w(n)为正态白噪声,试在N=356 和1024 点时,分别产生随机序列x(n)、画出x(n)的波形并估计x(n)的相关函数和功率谱
baizaosheng
- 按如下模型产生一组随机序列: x(n)=0.8x(n-1)+w(n) 其中w(n)为均值为1,方差为4 的正态分布白噪声序列。估计过程的自相关函数与功率谱。
Discrete-Time-Fourier-Transform
- Discrete Time Fourier Transform f(t) to F(w)-Discrete Time Fourier Transform f(t) to F(w)
W-M方程与小波变换
- 应用W-M函数建立了分形粗糙表面轮廓,用小波变换对其进行分解,考察了小波变换方法对原轮廓曲线的还原情况(The fractal rough surface profile is established by W-M function, and the wavelet transform is used to decompose it. The reduction of the original contour curve is investigated by the wavelet transf