搜索资源列表
NMF
- 非负矩阵分解的人脸识别NMF 可正常运行 算法源码-Non-negative matrix factorization NMF for face recognition algorithms can be the normal operation of source
2DLDAwiththeSVM-basedfacerecognitionalgorithm
- 二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的“小样本”效应,支持向量机 (SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽 略高频分量:然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用“一对多”的SVM 多类分类算法完成人脸 识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。-”Small sample size”problem
dct_bp
- 结合DCT和BP神经网络进行人脸识别。先利用DCT提取特征,然后利用BP神经网络分类,在ORL人脸库上测试效果不错。-The combination of DCT and BP neural network for face recognition. First DCT Feature Extraction, and then use the BP neural network classifier, a good test results on the ORL face database.
dct_pnn
- 结合DCT和概率神经网络进行人脸识别。先利用DCT提取特征,然后利用PNN分类,在ORL人脸库上测试效果不错。-The combination of DCT and probabilistic neural network for face recognition. First DCT Feature Extraction, and then use a PNN classification, good test results on the ORL face database.
ORLPPCAPSVM
- 一个完整的人脸识别算法实验,快速pca+svm算法,里面还带有orl人脸数据库,并且代码还有相应注释,大小有几十m,是一个很好的人脸实验-A complete face recognition algorithm experiments, fast pca+svm algorithm, which also comes with orl face database, and the code as well as the corresponding notes, there are dozens
KNN-Face-Recognition
- KNN分类算法实现人脸识别,数据集为ORL。训练样本分别为2、4、6,其余为测试样本。-KNN classification algorithm for face recognition, the data set for the ORL. 2,4,6 training samples respectively, the rest of the test samples.
PatternRecognition
- (1)Bayes分类 已知N=9, =3,n=2,C=3,问x= 应属于哪一类? (2)聚类 使用c-均值聚类算法在IRIS数据上进行聚类分析 (3)鉴别分析 在ORL或Yale标准人脸数据库上完成模式识别任务。 用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验。-(1) Bayes classification Known N = 9, = 3, n = 2, C = 3, x = should ask which cat
PCAface-recognitionGUI
- 基于PCA神经网络的人脸识别系统,有界面,可操作,代码齐全,内含ORL人脸数据库,可省心运行。别忘点个赞!-A face recognition system based on PCA neural network, a interface, operational, code complete, with ORL face , but worry.
v1.9
- 程序用vc6.0编写,基于离散余弦变换DCT和bp神经网络的人脸识别。采用ORL人脸库,对图像进行DCT低通滤波,再用BPNN进行训练或识别,样本空间内识别效果好。设计流程参考了本站 yaxuan 的v3.3(http://www.pudn.com/downloads330/sourcecode/math/detail1452162.html)(本程序不包含原作的粒子群修正权值及网络结构调整等功能,但调整了训练样本的排列顺序) 感谢原作者,若有侵权我会删除此上传^ ^-Vc6.0 procedu
facerecognition_basedORL
- 基于PCA的人脸识别,是在orl数据库上做测试。对理解PCA有很好的帮助。-Face recognition based on PCA, it is tested on orl .To understand PCA has very good help.
FaceVerification
- 在orl数据库上做的人脸认证试验,对理解人脸认证有一定的帮助。-Do face certification test on orl , have certain help in understanding human face certification.
mpca
- 以下Matlab项目包含用于模块化pca的源代码和Matlab示例。 代码有一些问题,orl面部从1.pgm命名为400.pgm.5从每个类中随机抽取的测试和训练集。图像分为4部分。-The following Matlab project contains the source code and Matlab examples used for modular pca. the code has some problem,orl faces are named 1.pgm to 400.pg
bagging-NLDA-and-RLDA
- 利用matlab实现NLDA人脸识别算法,更详细的random sampling LDA, bagging NLDA和整合LDA算子利用majority vote 和sum rule的matlab 代码,人脸库使用ORL库或者XM2VTS库,地址:http://shop.zbj.com/14563255/sid-1213623.html- matlab codes for NLDA face detection, the face s are ORL. More details about r
]ORL+PCA+SVM-11
- 编写了用户界面程序实现ocr人脸数据集的识别,使用了svm分类器(A user interface program is developed to realize the recognition of OCR face data set, and the SVM classifier is used)
BP神经网络
- 第一个m文件:构造、训练BP神经网络并计算其识别率;第二个文件将进行人脸检测。注意:orl人脸数据库需要在网上下载。(The function of the first m file is to construct and train the BP neural network and calculate its recognition rate. The second is the detection of face. Note: the ORL face database needs to
