搜索资源列表
bag_words_demo
- 一个学习自然场景类别的贝叶斯模型、基于“词袋”模型的目标分类。来源于Feifei Li的论文。是近年来的目标识别模型热点之一。-”A Bayesian Hierarchical Model for Learning Natural Scene Categories“ FeiFei Li.CVPR2005
sanweichangjingchonggou
- 移动机器人对其工作环境的有效辨识、感知与重构,是其自主导航与环境探索的基 础和前提条件。为实现非结构化环境的三维场景重构,本文在自主移动机器人平台上构 建了三维激光测距系统,设计和开发了三维场景重构软件 采用基于线段端点的ICP算 法准确快速的实现不同视点下的场景匹配 提出了基于核心场景的多场景重构策略,并 采用栅格划分法对重合区域进行数据精简,从而实现大范围三维场景重构。本文通过对 算法的实现和实验数据的比较分析,尝试对非结构化环境三维场景重构问题进行创新性 的探索与研
Vega
- Vega简单示例,展示了一个简单的模拟驾驶的场景,具有后视功能。-Vega simple example shows a simple simulated driving scene with rear view function.
Scene-of-the-Cybercrime---Computer-Forensics-Hand
- Scene of the Cybercrime - Computer Forensics Handbook
Wind_Turbine_Fog
- 国外网站下载的模拟风电场雾天效果运行的场景。可参考下。-Simulated wind farm fog effect abroad website running scene. Refer to the next.
SceneClassif
- Computer Vision Scene Classification scr ipt
MLkNN
- ML-KNN,这是来自传统的K-近邻(KNN)算法。详细地,为每一个看不见的实例中,首先确定了训练集中的k近邻。之后,基于从标签集获得的统计信息。这些相邻的实例,即属于每个可能类的相邻实例的数量,最大后验(MAP)原理。用于确定不可见实例的标签集。三种不同现实世界中多标签学习问题的实验研究,即酵母基因功能分析、自然场景分类和网页自动分类,表明ML-KNN实现了卓越的性能(ML-KNN which is derived from the traditional K-nearest neighbo
brazilian_coffee_dataset
- brazilian coffee scene 数据集(brazilian coffee scene dataset)
Machine learning
- 提供监控场景下多张带有标注信息的行人图像,可定位(头部、上身、下身、脚、帽子、包)的基础上研究行人精细化识别算法,自动识别出行人图像中行人的属性特征。(It provides a number of pedestrian images with tagged information under the monitoring scene, and can study the pedestrian refinement recognition algorithm based on the locat
